5 Braches of chemistry

The 5 Branches of Chemistry

The 5 Branches of chemistry are Organic Chemistry, Inorganic Chemistry, Physical Chemistry, Analytical Chemistry, and Bio-Chemistry.

– Organic Chemistry: Organic chemistry is a discipline within chemistry which involves the scientific study of the structure, properties, composition, reactions, and preparation (by synthesis or by other means) of chemical compoundsthat contain carbon. These compounds may contain any number of other elements, including hydrogen, nitrogen, oxygen, the halogens as well as phosphorus, silicon and sulfur.
The original definition of “organic” chemistry came from the misconception that organic compounds were always related to life processes. However, organic molecules can be produced by processes not involving life. Life as weknow it also depends on inorganic chemistry. For example, many enzymes rely on transition metals such as iron and copper; and materials such as shells, teeth and bones are part organic, part inorganic in composition. Apart from elemental carbon, only certain classes of carbon compounds (such as oxides, carbonates, and carbides) are conventionally considered inorganic. Biochemistry deals mainly withthe natural chemistry of biomolecules such as proteins, nucleic acids, and sugars.
Because of their unique properties, multi-carbon compounds exhibit extremely large variety and the range of application of organic compounds is enormous. They form the basis of, or are important constituents of many products (paints, plastics, food, explosives, drugs, petrochemicals, to name but a few) and (apartfrom a very few exceptions) they form the basis of all earthly life processes.
The different shapes and chemical reactivities of organic molecules provide an astonishing variety of functions, like those of enzyme catalysts in biochemical reactions of live systems.
Current (as of 2008) trends in organic chemistry include chiral synthesis, green chemistry, microwave chemistry, fullerenes andmicrowave spectroscopy.
– History: At the very beginning of the nineteenth century chemists generally thought that compounds from living organisms were too complicated in structure to be capable of artificial synthesis from non-living things, and that a ‘vital force’ or vitalism conferred the characteristics of living beings on this form of matter. They named these compounds ‘organic’, and preferredto direct their investigations toward inorganic materials that seemed more promising.
Organic chemistry received a boost when it was realized that these compounds could be treated in ways similar to inorganic compounds and could be created in the laboratory by means other than ‘vital force’. Around 1816 Michel Chevreul started a study of soaps made from various fats and alkali. He separated thedifferent acids that, in combination with the alkali, produced the soap. Since these were all individual compounds, he demonstrated that it was possible to make a chemical change in various fats (which traditionally come from organic sources), producing new compounds, without ‘vital force’. In 1828 Friedrich Wöhler first manufactured the organic chemical urea (carbamide), a constituent of urine,from the inorganic ammonium cyanate NH4OCN, in what is now called the Wöhler synthesis. Although Wöhler was, at this time as well as afterwards, cautious about claiming that he had thereby destroyed the theory of vital force, most have looked to this event as the turning point.
A great next step was when in 1856 William Henry Perkin, while trying to manufacture quinine, again accidentally came tomanufacture the organic dye now called Perkin’s mauve, which by generating a huge amount of money greatly increased interest in organic chemistry. Another step was the laboratory preparation of DDT by Othmer Zeidler in 1874, but the insecticide properties of this compound were not discovered until much later.
The crucial breakthrough for the theory of organic chemistry was the concept of chemical…